228 research outputs found

    Modeling pipelined application with Synchronous Data Flow graphs

    Get PDF

    Exploiting Vectorization in High Level Synthesis of Nested Irregular Loops

    Get PDF
    Synthesis of DoAll loops is a key aspect of High Level Synthesis since they allow to easily exploit the potential parallelism provided by programmable devices. This type of parallelism can be implemented in several ways: by duplicating the implementation of body loop, by exploiting loop pipelining or by applying vectorization. In this paper a methodology for the synthesis of nested irregular DoAll loops based on outer vectorization is proposed. The methodology transforms the intermediate representation of the DoAll loop to introduce vectorization and it can be easily integrated in existing state of the art High Level Synthesis flows since does not require any modification in the rest of the flow. Vectorization is not limited to perfectly nested countable loops: conditional constructs and loops with variable number of iterations are supported. Experimental results on parallel benchmarks show that the generated parallel accelerators have significant speed-up with limited penalties in terms of resource usage and frequency decrement

    Code transformations based on speculative SDC scheduling

    Get PDF
    Code motion and speculations are usually exploited in the High Level Synthesis of control dominated applications to improve the performances of the synthesized designs. Selecting the transformations to be applied is not a trivial task: their effects can indeed indirectly spread across the whole design, potentially worsening the quality of the results. In this paper we propose a code transformation flow, based on a new extension of the System of Difference Constraints (SDC) scheduling algorithm, which introduces a large number of transformations, whose profitability is guaranteed by SDC formulation. Experimental results show that the proposed technique in average reduces the execution time of control dominated applications by 37% with respect to a commercial tool without increasing the area usage

    Field-controlled Self-assembly and Disassembly of Colloidal Nanoparticles

    Get PDF
    Self-assembly of nanoparticles is one of the most promising methods for the preparation of novel materials and devices with exceptional properties. In order to control nanoparticles self-assembly, an understanding of their interactions is absolutely necessary. One convenient way to achieve a control on their interaction is through the use of external fields. Here we provide two different examples of how interparticle interactions are affected by interactions with external fields. In the first case, magnetic fields are used to induce dipolar interactions among concentrated suspension of superparamagnetic nanocolloids, which cause them to self-assemble into dense chain-like anisotropic structures, used as templates for the growth of porous materials with tunable properties. In the second case, it is shown how more commonly employed but less understood flow fields interact with clusters of particles, and lead to their restructuring or disassembly depending upon the shear stress applied

    Polymer Colloids: Moving beyond Spherical Particles

    Get PDF
    When thinking about colloidal particles, the fist image that comes into mind is that of tiny little polystyrene spheres with a narrow size distribution. While spherical polymer colloids are one of the workhorses of colloid science, scientists have been working on the development of progressively advanced strategies to move beyond particles with spherical shapes, and prepared polymer colloids with more complex morphologies. This short review aims at providing a summary of these developments, focusing primarily on methods applicable to submicron particles, with an eye towards their applications and some discussion about advantages and drawbacks of the various approaches

    Bioinspired stimuli-responsive color-changing systems

    Get PDF
    Stimuli-responsive colors are a unique characteristic of certain animals, evolved as either a method to hide from enemies and prey or to communicate their presence to rivals or mates. From a material science perspective, the solutions developed by Mother Nature to achieve these effects are a source of inspiration to scientists for decades. Here, an updated overview of the literature on bioinspired stimuli-responsive color-changing systems is provided. Starting from natural systems, which are the source of inspiration, a classification of the different solutions proposed is given, based on the stimuli used to trigger the color-changing effect

    Universal breakup of colloidal clusters in simple shear flow

    Get PDF
    We have studied the long-term dynamics of shear-induced breakage of individual colloidal clusters, covering a wide range of fractal dimensions, using Stokesian dynamics. We found that the time evolution of the normalized average size of the fragments generated by the breakup process could be scaled using a unique dimensionless time defined by multiplying the real time with the cluster breakage rate constant (τ = t·kB). Clusters with different masses but the same fractal dimension exhibited almost identical breakage dynamics when exposed to equal overall hydrodynamic forces (ηγRg,0²). The steady-state values of the average size, mass, and standard deviation of fragment mass distribution showed a universal scaling depending only on the overall hydrodynamic force, irrespective of the initial cluster properties. We also identified two asymptotic regimes for the evolution of the fractal dimension, ⟨df⟩, of fragments: open clusters (d f ≤ 2.1) produced dense fragments with a limiting ⟨df⟩ ≈ 2.4 ± 0.1; conversely, dense clusters (df ≥ 2.5) produced fragments with ⟨df⟩ ≈ 2.5 ± 0.1

    Surface Functionalization of Monodisperse Magnetic Nanoparticles

    Get PDF
    We present a systematic methodology to functionalize magnetic nanoparticles through surface-initiated atom-transfer radical polymerization (ATRP). The magnetite nanoparticles are prepared according to the method proposed by Sun et al. (2004), which leads to a monodisperse population of ~ 6 nm particles stabilized by oleic acid. The functionalization of the nanoparticles has been performed by transforming particles into macro-initiators for the ATRP, and to achieve this two different routes have been explored. The first one is the ligand-exchange method, which consists of replacing some oleic acid molecules adsorbed on the particle surface with molecules that act as an initiator for ATRP. The second method consists in using the addition reaction of bromine to the oleic acid double bond, which turns the oleic acid itself into an initiator for the ATRP. We have then grown polymer brushes of a variety of acrylic polymers on the particles, including polyisopropylacrylamide and polyacrylic acid. The nanoparticles so functionalized are water soluble and show responsive behavior: either temperature responsive behavior when polyisopropylacrylamide is grown from the surface or PH responsive in the case of polyacrylic acid. This methodology has potential applications in the control of clustering of magnetic nanoparticles.Singapore-MIT Alliance (SMA

    Computer Assisted Design and Integration of FPGA Accelerators in Aerospace Systems

    Get PDF
    The integration of Field Programmable Gate Arrays (FPGAs) in an aerospace system allows to improve its efficiency and its flexibility thanks to their programmability. To exploit these devices, the designer has to identify the functionalities that have to be executed on them and provide their implementation by means of Hardware Description Languages. Generating these descriptions for a software developer could be a very difficult task because of the different programming paradigms of software programs and hardware descriptions. To facilitate the developer in this activity, High Level Synthesis techniques have been developed aiming at (semi-)automatically generating hardware implementations of specifications written in high level languages (e.g., C). State of the art tools implementing such methodologies have not been designed for the integration with aerospace systems design flows, so significant adaptations could be required to the designer for integrating the hardware implementations with the rest of the design solution. In this paper the integration of a High Level Synthesis design flow in the TASTE framework (http://taste.tuxfamily.org) is presented. TASTE is a set of freely available tools for the development of real time embedded systems developed by the European Space Agency together with a set of its industrial partners. This framework allows to integrate specifications described in different languages (e.g., C, ADA, Simulink, SDL) by means of formal languages (AADL and ASN.1) and to early verify the correctness of the produced solutions. TASTE has been extended with Bambu (http://panda.dei.polimi.it), a tool for the High Level Synthesis developed at Politecnico di Milano. In this way the TASTE users have the possibility to specify which functionalities, provided by means of high level languages such C, have to be implemented in hardware on the FPGA without having to directly provide the hardware implementations. Thanks to the integration of the High Level Synthesis tool indeed, the framework is able not only to produce the hardware implementations, but also to integrate them in the rest of the aerospace system by automatically generating the whole architecture to be implemented on the FPGA. This architecture contains not only the implementation of the hardware accelerators, but also of the components required to transfer the data from and to the rest of the system and to correctly manage their size and endianness. The application of the extended framework to a real case study shows its effective usability

    Effect of clustering on the heat generated by superparamagnetic iron oxide nanoparticles

    Get PDF
    Magnetic nanoparticles have been the subject of enormous investigations for their potential use as cancer treatment via hyperthermia. This is due to their ability to generate heat when exposed to an external magnetic field oscillating at sufficiently high frequency. There are many different parameters that need to be considered when designing the optimal nanoparticle formulation for hyperthermia. The effect of the formation of clusters of nanoparticles, which is either an unwanted side effect of poor colloidal stability of the particles, or a desired for- mulation strategy, has poorly understood consequences on the amount of heat generated by the nanoparticles. The objective of this work is to address this problem from the theoretical side by performing detailed simulations to investigate the effect of incorporation of magnetic nanoparticles in clusters on the amount of heat generated as a function of the particle size, cluster size and particles magnetic properties
    • …
    corecore